Electrospun Plant Protein Scaffolds with Fibers Oriented Randomly and Evenly in Three-Dimensions for Soft Tissue Engineering Applications

نویسندگان

  • Shaobo Cai
  • Yiqi Yang
چکیده

In this work, electrospinnable and water stable soyprotein was extracted by using a reducing agent in mild alkaline condition, and novel 3D zein and 3D pure soyprotein electrospun scaffolds with three-dimensionally and randomly oriented fibers and large interconnected pores were successfully fabricated by reducing surface resistivity of materials. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D randomly oriented fibrous architectures in many native extracellular matrixes (ECM). Confocal laser scanning microscope shows that instead of becoming flattened cells when cultured in conventional electrospun scaffolds, the cells cultured on novel 3D scaffolds could develop into stereoscopic topographies, which highly simulated in vivo 3D cellular morphologies and are believed to be of vital importance for cells to function and differentiate appropriately. In vitro cell attachment, proliferation and differentiation study indicated that the 3D fibrous scaffold could better support the attachment and proliferation of NIH 3T3 mouse fibroblast cells, and could better support ADMSC for proliferation and adipogenic differentiation. One mechanism of this fabrication process has also been proposed and shown that the rapid delivery of electrons on the fibers was the crucial factor for formation of 3D architectures. The novel dissolution method could be applied to a number of water stable proteins that contains large amount of intermolecular and intramolecular disulfide bond crosslinkages, and 3D electrospinning method could be applied to many other proteins and materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsically water-stable electrospun threedimensionalultrafine fibrous soy protein scaffoldsfor soft tissue engineering using adipose derivedmesenchymal stem cells

Intrinsically water-stable electrospun threedimensional ultrafine fibrous soy protein scaffolds for soft tissue engineering using adipose derived mesenchymal stem cells" (2014). Faculty Publications-Textiles, Merchandising and Fashion Design. Paper 35. Soy protein, the plant protein from soybean, was electrospun into intrinsically water-stable scaffolds with large volume and ultrafine fibers or...

متن کامل

Novel 3D electrospun scaffolds with fibers oriented randomly and evenly in three dimensions to closely mimic the unique architectures of extracellular matrices in soft tissues: fabrication and mechanism study.

In this work, novel electrospun scaffolds with fibers oriented randomly and evenly in three dimensions (3D) including in the thickness direction were developed based on the principle of electrostatic repulsion. This unique structure is different from most electrospun scaffolds with fibers oriented mainly in one direction. The structure of novel 3D scaffolds could more closely mimic the 3D rando...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

Electrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional

Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...

متن کامل

Electrospun Nanofibers and their Application in Tissue Repair and Engineering

Introduction: Tissue engineering is the repair and replacement of damaged tissues and requires a combination of cells, growth factor and porous scaffolds. Scaffolds, as one of the main components in tissue engineering, are used as a template for tissue regeneration and induction and guidance of growth of the new and biologically active tissues. An ideal scaffold in tissue engineering, imitating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016